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WAVELET BASED CUTTING STATE
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Chatter and non-chatter cutting states, associated with the orthogonal cutting of stiff
metal cylinders, are identified through an analysis of the ratios of the mean
absolute deviations of details of the biorthogonal 6,8 wavelet decomposition of cutting
force measurements. Sequences of cutting experiments were performed in which either
depth of cut or turning frequency was varied. For light and medium cutting the
mean absolute deviations of the ratios of details d3 and d4 is less than 7 while for
chatter it is greater than 15. The kurtosis of detail d3 is shown to identify transitions to
chatter.
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1. INTRODUCTION

The construction of models of orthogonal cutting from first principles presents problems
which have not, as yet, been entirely resolved. A review of cutting vibration research to
1979 is given in reference [1]. Examples of more recent modelling are provided in references
[2, 3].

Contemporary efforts to control cutting dynamics have emphasized signal processing
methodologies in an attempt to avoid the difficulties inherent in the construction of
physical models. Back propagation neural networks were used to detect the onset of
chatter in reference [4]. Cutting state characterization by other means was required
before numerically generated functions could be constructed to train the neural networks.

Gaussian wavelet transforms were employed in reference [5] to study the dynamical
characteristics of non-regenerative thread and slot cutting processes. Tool acceleration and
cutting forces were measured for feeds parallel and perpendicular to the rotational axis
of a turning specimen. The effects of spindle speed, feed rates and width of cut were
studied. Differentiation between various cutting states was made on the basis of
qualitative features of power spectra and wavelet based time frequency plots. Real time
or simulated control of the cutting process was not reported. In reference [6] algorithms
based on higher order spectral analysis were applied to state identification in orthogonal
cutting.

In the following the identification of chatter and pre-chatter states associated with the
orthogonal cutting of stiff cylinders is realized through an analysis of the ratio of the mean
absolute deviations of details d3 and d4 of a biorthogonal 6,8, bi 6,8, wavelet decomposition
of cutting force measurements. An examination of the bi 6,8 decomposition of cutting force
measurements revealed systematic changes in the amplitudes of details d3, d4. Since
algorithms for on-line real time control are sought, computationally simple and efficient
measures of amplitude were considered. The standard deviation, mean absolute deviation
and median absolute deviation were studied. Amongst these the ratio of the mean absolute
deviation of details d3 and d4, m.a.(3,4), was found to provide a consistent identification
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of pre-chatter and chatter states. Because of the relatively high noise levels associated
with tool acceleration data, the m.a.(3,4) ratio was found to be a less effective indicator of
cutting states when based on tool acceleration data rather than on cutting force data. The
kurtosis of d3 was computed and identified as useful in characterizing transitions to chatter.

Sequences of cutting experiments were performed in which either depth of cut or turning
frequency was varied with all other cutting parameters held constant. Each variable cutting
depth sequence ended in chatter while each variable turning frequency sequence contained
at least one chatter state. Three sequences of experiments with variable depth of cut and two
with variable turning frequency, a total of 24 cutting experiments, were studied. Results
typical of the entire set are presented for two sequences of variable cutting depth and a single
sequence of variable turning frequency. For light and medium cutting m.a.(3,4)Q 7. For
chatter m.a.(3,4)q 15. In a 5-s transition to chatter for constant depth of cut and turning
frequency, m.a.(3,4) monotonically increased from 8·0 to a maximum of 18·0 at chatter.

Wavelets possess excellent resolution capabilities in the time domain which is
advantageous in the analysis of non-stationary time series arising in metal cutting. The ratio
m.a.(3,4) was computed over 1-s intervals of the time series. However, similar results were
found for intervals of 0·5 s.

A description of the experimental apparatus is followed by definitions and results from
the theory of biorthogonal wavelets. Measures of the amplitudes of details, di , of wavelet
decompositions are presented and applied to the analysis of the cutting data. A study of
sequences of cutting experiments shows that the ratio m.a.(3,4) differentiates between
chatter, pre-chatter and other cutting states.

2. EXPERIMENTAL APPARATUS

A schematic diagram of the experimental apparatus employed is shown in Figure 1 and
consists of a Hardinge CNC lathe, a special force dynamometer (utilizing three Kistler

Figure 1. The experimental system.
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Figure 2. Test function f1(x): (a) level 5 db3 decomposition of f1; (b) level 5 bi 6,8 decomposition of f1;
amplitude versus data point number.
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Figs 3(a) and (b)—Caption opposite.
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Fig. 3(c).

Figure 3. Bi 6,8 decomposition at level 5 of s-1; (a) 2·3 mm; (b) 2·6 mm; (c) 2·8 mm; amplitude versus data
point number.

9068 force transducers) and its associated electronics, and a digital spectrum analyzer
(Hewlett Packard 3566A) for data acquisition and real-time analysis.

All experiments involve only right-handed orthogonal cutting. Positive rake tool inserts
were employed (Kennametal TPMR322) and were supported by Kennametal
KT-GPR123B tool holders. The tool holder–insert combination resulted in a rake angle
of 5° and a clearance angle of 4°. Cylindrical work pieces of 1020 steel were machined
under a wide range of cutting conditions.

Tool flank wear was held to less than 0·1 mm. The feed rate was constant with a value
of 0·007 ipr. (0·1778 mm/rev) and identical for every experiment. A constant cutting speed
of 90 m/min was realized for experiments with various turning frequencies by utilizing
workpieces of suitably chosen diameters.

The force dynamometer is rigidly mounted on the lathe’s turret and is specifically
designed for compatibility with its geometry. It comprises three Kistler 9068 tri-axial force
transducers sandwiched between heavy steel plates under high pre-load. The cover plate
is an exact copy of the turret’s channel design capable of carrying ordinary left and right
handed tools. The lowest natural frequency of the assembly is approximately 6000 Hz and
the maximum allowable amplitude for each component of the applied cutting force is
13 kN (2923 lbf). Compensation of the force measurements of the inertia of the top plate
of the dynamometer assembly is carried out by an analogue circuit utilizing the measured
accelerations of the centre of mass of the plate.
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Since all work pieces were stubby, work piece modal characteristics did not affect the
turning dynamics. The sampling rate was 4096 Hz and the cut off frequency was 1100 Hz.
Record lengths ranged from 20–60 s except for chatter records which had a duration of
2–10 s.

3. BIORTHOGONAL WAVELETS

The dual biorthogonal wavelet bases C(a)
jk , a=1,2, are each given by the dilates and

translates of dual wavelet functions C(a), respectively, with C(a) $ L2(R) and

C(a)
jk (x)=2−j/2C(a)(2−jx− k). (1)

The Fourier transforms of the dual scaling functions are

f
 (a)(j)= (2p)−1/2 t
a

j=1

m(a)
0 (2−jj), (2)

where

m(a)
0 (j)=2−1/2 s

n

h(a)
n exp (−i n j), s

n

h(1)
n h(2)

n +2k= dko (3, 4)

and

f
 (j)= (2p)−1/2 g exp (−i j x)f(x) dx. (5)

The dual wavelet and scaling functions are related by

c(a)(x)=z2 s
n

(−1)nh(a)
1− n f(a)(2x+ n). (6)

It is then shown in references [7, 8] that for any f $ L2(R),

f(x)= s
j,k

Q f, c(a)
jk qc(b)

jk (x), (7)

with a, b=1, 2 and a$ b provided there exists C and o so that =f
 (a)(j) =EC(1+ =j =)−1/2− o

and f f(a)(x)f(b)(x− k) dx= dko , where � fg�=a f(n)g(n).
In the biorthogonal case it is possible to choose m(1)

0 so that the associated scaling
function is symmetric, f(1)(x)=f(1)(−x). The filter associated with m(1)

0 is then a linear
phase filter [7, 8] for which

m(1)
0 (j)= exp (i l j) =m(1)

0 = (8)

for some real l. Wavelets associated with symmetric scaling functions or linear phase are
found to be smooth [7].

The result (7) was essentially derived in reference [9] through the theory of filter banks.
Conditions for perfect reconstruction of the given time series, f(n), are also proven.

The cutting data wavelet analysis was carried out utilizing biorthogonal wavelets
associated with the 6,8 spline scaling functions. For this case f(1) and f(2) are sixth and
eighth order B-spline functions, respectively. The family of biorthogonal wavelets based
on the B-spline functions was developed in references [7, 9] and implemented in reference
[10].
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Figure 4. (a) m.a.(3,4) versus depth of cut for s-1; (b) kurtosis versus depth of cut for s-1.
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Figs 5(a) and (b)—Caption on opposite page.
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Figure 5. (a) m.a. (3,4) versus depth of cut for s-2; (b) m.a. (3,4) versus depth of cut for the s-2 transition to
chatter; (c) kurtosis versus depth of cut for the s-2 transition to chatter.

The choice of the 6,8 biorthogonal wavelet for subsequent time series analysis was the
result of a numerical study of analytic test cases and cutting force time series with
the Daubechies and spline based biorthogonal wavelet families. It is shown in reference
[8] that the biorthogonal wavelet 6,8 has bounded support, perfect reconstruction and
linear phase.

A detail, dj (x), of a function f(x), is defined as

dj (x)= s
k

Q f, c(a)
jk qc(b)

jk (x) (9)

and an approximation AN at the Nth level [10], by

AN = s
jqN

dj . (10)

Then for a perfect reconstruction at the Nth level of the discreet function f(n) [8, 11],

f(n)=AN + s
jEN

dj . (11)
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The Daubechies 3, db3, and 6,8 biorthogonal, bi 6,8, decompositions of the phase
coupled function

f1 (x)= cos (0·2pt+f1)+ cos (0·2pt+f2)+ cos (0·4pt+f1 +f2) (12)

are shown in Figures 2(a) and (b), respectively. f1 (t) and f2 (t) are independent, uniformly
distributed random variables. The smoothing and resolution capabilities of bi 6,8 for
equation (12) are evident from a comparison of Figures 2(a) and (b). An examination of
the amplitudes indicates superior resolution and smoothing of di in the case of bi 6,8. Bi
6,8 is subsequently used for the decomposition of time series derived from the single point
cutting of steel cylinders.

4. AMPLITUDE ESTIMATION

An examination of the decomposition of data set s-1, Figures 3(a)–(c) reveals systematic
changes in the amplitudes of the details, di , equation (9). For example, the amplitude of
d3 increases as a function of the depth of cut. The standard, mean absolute and median
absolute deviations were chosen as readily computed measures of amplitude. Given a data
set xi , i=1, n with mean m=(Sxi )/n, median0 d, standard deviation0 s, mean absolute
deviation0m.a. where

m.a.=
1
n

s
i

=xi − m =, (13)

Measure of the departure of the distribution of set xi from a normal distribution around
the mean is provided by the kurtosis0 g2, where

g2 = (m4 /s4)−3, (14)

with m4 = (1/n)S(xi − m)4. g2 =0 for a normal distribution. The kurtosis has been found
to be useful in characterizing transitions into chatter. If x=sin t for 0E tE 2mp, where
m is an integer, then g2 =−1·5. For the function x=1, 0E tE 1, x=−1, −1Q tE 0
and x=0 otherwise, g2 =−2·0. The histograms for d3 for chatter and near chatter cutting
states resemble those of these two test functions and are similarly associated with negative
values of kurtosis, g2 Q 0, see equation (14).

5. WAVELET ANALYSIS OF CUTTING DATA

Sequences of cutting experiments were performed in which either depth of cut or turning
frequency was varied with all other cutting parameters held constant. Fifth level, N=5,
bi 6,8 wavelet decomposition of cutting force measurements are given, over a time interval
of 1 s, for two sequences with variable depth of cut and two sequences with variable turning
frequency for a turning frequency range of 290–852 r.p.m. Each variable cutting depth
sequence ended in chatter while each variable turning frequency sequence contained at
least one chatter state. A total of 24 cutting experiments were performed for which cutting
forces were measured.
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Figure 6. (a) m.a.(3,4) versus turning frequency for s-3; (b) kurtosis versus turning frequency for s-3.
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For sequence 1, s-1, the turning frequency=708 r.p.m., rake angle=5°, surface
speed=90 m/min, feed rate=0·007 in./rev/. resampling rate=1024 Hz, frequency
cut-off=1100 Hz and the depth of cut=2·3, 2·5, 2·6, 2·7 and 2·8 mm. At a depth of
2·8 mm chatter was observed.

Level 5, bi 6,8 decompositions of the cutting force are shown in Figures 3(a)–(c) for
cutting sequence s-1 with depths of cut of 2·3, 2·6 and 2·8 mm, respectively. The s, m.a.
and md.a, (13, 14, 15), of d3 and d4, s(3), s(4), m.a.(3), m.a.(4), etc., form the
non-dimensional ratios s(3, 4)= s(3)/s(4), m.a.(3, 4)=m.a.(3)/m.a.(4), etc. m.a.(3, 4) is
displayed for sequence s-1 in Figure 4(a).

For non-chatter states m.a.(3, 4) is 2·2 for 2·3 mm, rising to approximately 5·0 for 2·5,
2·6, 2·7 mm and increasing to 16·9 for 2·8 mm, the chatter state. Although all the ratios
behave in a qualitatively similar manner m.a.(3, 4) was found to be the most reliable
indicator of chatter and pre-chatter states. Consequently only m.a.(3, 4) will be utilized
subsequently.

Kurtosis, g2, equation (14), provides a measure of the departure from a normal
distribution. Kurtosis versus depth of cut for data set s-1 is displayed in Figure 4(b).
Kurtosis reaches a value of −1·106 for the chatter state, depth of cut of 2·8 mm and is
negative for 2·7 mm. A negative value of kurtosis is seen to occur for a depth of cut of
2·5 mm, well away from the chatter state.

For sequence 2, s-2, the turning frequency=297 r.p.m., rake angle=5°, surface
speed=90 m/min, feed rate=0·007 in./rev., resampling rate=1024 Hz, frequency
cut-off=1100 Hz and depth of cut=2·675, 2·70 and 2·725 mm. At a depth of 2·725 mm,
chatter was observed after a 10-s transition. m.a.(3,4) versus depth of cut for s-2 is shown
in Figure 5(a). For non-chatter states m.a.(3,4) is 1·3 and 2·7 for depth of cut of 2·675
and 2·7 mm, respectively, increasing to 12·6 for a pre-chatter state at 2·725 mm. The
transition to chatter occurring at a depth of cut=2·725 mm is shown in Figure 5(b). For
time e5 s, m.a.(3,4) is an increasing function reaching a value of 18·3 in the final chatter
state.

For data set s-2 positive values of kurtosis occur for the non-chatter states corresponding
to depths of cut of 2·675 and 2·70 mm. At a depth of 2·725 mm, a 10-s transition to chatter
occurs. A large positive value of kurtosis occurs for the first second of the transition. The
kurtosis is negative for the next 9 s of the transition except for a small positive value for
second nine, just prior to the appearance of chatter.

For sequence 3, s-3, the depth of cut=2·8 mm, rake angle=5°, surface
speed=90 m/min, feed rate=0·007 in./rev., resampling rate=1024 Hz and turning
frequency=335, 360, 371, 390 and 434 r.p.m. Chatter was observed for turning
frequencies of 371 and 434 r.p.m. for which m.a.(3,4) equals 15·3 and 24·22, respectively,
Figure 6(a). Values of m.a.(3,4) for the non-chatter states corresponding to 335, 360 and
390 r.p.m. are 10·7, 1·9 and 3·06, respectively.

Kurtosis versus depth of cut for data set s-3 is displayed in Figure 6(b). The kurtosis
is negative for the chatter states at 371 r.p.m. and at second two of 434 r.p.m. The first
second of 434 r.p.m. is a pre-chatter state with a positive kurtosis. A negative value of
kurtosis occurs at 360 r.p.m. which is not a chatter state. The kurtosis is positive
for the two remaining non-chatter states corresponding to 335 and 390 r.p.m.,
respectively.

In the instances discussed above, m.a.(3,4), based on cutting force measurements,
discriminated between chatter and all other cutting states. For light to medium cutting
m.a.(3,4)Q 7. The high resolution of bi 6,8, in time and scale, makes possible the detection,
as a function of time, of the transition from a non-chatter to the chatter state. Kurtosis
is negative for the chatter state. The values of kurtosis associated with the transition from
pre-chatter to chatter are generally negative.
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6. CONCLUSIONS

A wavelet decomposition of cutting force time series is shown to provide a means for
the characterization of cutting states. The non-dimensional ratio of the mean absolute
deviation of details d3 and d4, computed over 1-s intervals of the time series, discriminates
between chatter and non-chatter states. In this context the resolving capacity of
biorthogonal 6,8 wavelet makes possible the characterization, as a function of time, of the
transition from a pre-chatter to the chatter state. Numerical studies indicate that cutting
state characterizations over 1

2 s intervals closely approximate those computed over 1-s
intervals. Histograms of d3 are nearly all bi-modal in the neighborhood of chatter,
Figure 7(a). Therefore, the kurtosis of d3 is almost always negative in such neighborhoods.
For the histogram shown in Figure 7(a), data set s-1, depth of cut=2·8 mm, detail d3,
the kurtosis=−0·88. Consider the functions sin t, 0E tE 2p and f(t)=−1, 0E tQ 1,
+1, 1E tE 2 for which the kurtosis equals −1·5 and −2·0, respectively. The
corresponding histograms are strongly bi-modal, Figure 7(b). The kurtosis of d3

complements m.a.(3,4) as a chatter indicator.
Gaussian wavelet transforms were employed in reference [5] in the study of

non-regenerative thread and slot cutting processes. Identification of cutting states was
based on qualitative features of wavelet based time-scale plots. Quantitative cutting state
indicators were not given. The properties of m.a.(3,4) suggest that it may find application
in the control of orthogonal cutting.
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APPENDIX: NOMENCLATURE

AN reconstructed approximation at level N
di reconstructed detail at level i
f frequency coefficient
f(t), f(n) continuous signal, discrete signal
g2 kurtosis
m.a.(a, b) mean absolute deviation of detail a divided by the mean absolute deviation of detail

b
mo linear phase filter
md.a.(a, b) median absolute deviation of detail a divided by the median absolute deviation of detail

b
s(a, b) standard deviation of detail a divided by the standard deviation of detail b
t time
v frequency (rad/s)
c, f wavelet function, scaling function
cjk , fjk wavelet and scaling functions at level k and scale j
bi 6,8 biorthogonal wavelets with spline 6,8
fi (t) uniformly distributed random variables


